HULLA & JAPANESE ERMANDERING BUILD

FORMULA ONE RACE PREDICTION MODEL

SPENCER STAUB

THE GEORGE WASHINGTON UNIVERSITY

FALL 2022

Formula One Background

- Season Format
 - 20+ events per season organized into Grand Prix weekends
 - 20 drivers per year
 - 10 teams per year with 2 drivers per team
- Grand Prix Format
 - 3 Practice sessions total on Friday and Saturday
 1 Qualifying session
 - 1 Race

- Practice Format
 - Open track
 - Drivers record 10-40 laps per session
- Qualifying Format
 Used to determine the starting order for the race
 Quickest driver starts at the front
 Race Format
 - ✤ 50-75 laps
 - 2 hours long
 - ✤ Top 10 finishers score points

Why Formula One?

A unique challenge with nearly unlimited scope

Challenges:

* Millions of data points

Race Data

- Qualifying Data
- ✤ Practice Data
- Telemetry Data

Weather Data

Target Variable?

Categorical?

✤ Numerical?

✤ Binary?

Unlimited Scope:

✤ Feature Engineering Methods

- Different aggregation methods
- Varying historical window
- Relative Performance of Car, Driver, Teammates, ect.

Use of Modeling for Feature Engineering

✤ Tracks

- Percentage of tight corners
- Length of straights
- Percentage of on-throttle

Cars

- Top Speed
- Cornering Performance

Driver Style

Opportunities to make money through Sports Betting

As a Formula One fan this topic is particularly interesting

Data

Retrieved via the Ergast API through the FastF1 Python package

- Years Available
 - Race results & weather 1951-2022
 - ✤ Qualifying results1994-2022
 - ✤ Telemetry 2018-2022

Available Data includes:

- Session Results Qualifying and Race finishing order
- Lap Results Lap Time, Sector Time, Tire Compound, Speed Trap
- Car Telemetry Data Track Position, Throttle, Brake, Distance of Driver Ahead
- ✤ Weather Data
- 2+ Million observations of telemetry data per Grand Prix Weekend
 - ✤ 40+ Million per Season
 - ✤ 200+ Million total

Relatively Clean Data
 Low NA / Duplicate Rate

VODAFONE MCLAREN MERCEDES

VODAFONE MCLAREN MERCEDES

Track EDA

56 Different Tracks Raced (1951-2022)

Top Tracks:

British Grand Prix

- Italian Grand Prix
- Monaco Grand Prix

Most Dangerous Tracks

- Saudi Arabian Grand Prix
- Monaco Grand Prix
- Azerbaijan Grand Prix

Drivers with Most Track Experience

- ✤ Hamilton (15 brit, 15 Ital, 14 Mon)
- Verstappen (7 brit, 7 Ital, 6 Mon)
- Leclerc (4 brit, 4 Ital, 3 Mon)

Teams with Most Track Experience

- Ferrari (151 brit, 191 Ital, 145 Mon)
- Mercedes (30 brit, 31 Ital, 26 Mon)
- Red Bull (26 brit, 26 Ital, 26 Mon)

Top 10 Tracks by Frequency

British Grand Prix ■ Italian Grand Prix

Monaco Grand Prix Belgian Grand Prix French Grand Prix Spanish Grand Prix

United States Grand Prix Hungarian Grand Prix

Austrian Grand Prix

Dutch Grand Prix

Most Dangerous Tracks By Average Accident Frequency

Saudi Arabian Grand

Prix

Monaco Grand Prix

Azerbaijan Grand Prix

- Belgian Grand Prix
- Portuguese Grand Prix Spanish Grand Prix

Dutch Grand Prix

■ Austrian Grand Prix

Hungarian Grand Prix

British Grand Prix

Team and Driver EDA

Qualifying Correlation

- Qualifying Results (where a driver starts) is highly correlated with finishing position
 - ✤ Starts in 1st: 42% Win Rate
 - ◆ Starts in 2nd : 23% Win Rate
 - Qualifying Feature Importance: 0.375
 - ✤ All other features are less than 0.02
- This CAN be a problem:
- When Qualifying is removed:
 - Max Feature Importance Value Decreases
 - Other Features Importance Values Increase
 - Model accuracy decreases, however, betting odds increase
 - The less data before a bet is made = higher betting odds + more opportunities to make money
 - Is it worth removing qualifying?

*** Monaco has a 51% First place win rate

Feature Engineering

Aggregation Features (Grouped by Driver, Team and/or Race)
Historical Finishing Positions (Last, Past 10, Total History)
Historical Qualifying Positions (Last, Past 10, Total History)
Previous Years Performance (Points, Driver/Team Champion)
Historical Car Reliability
Historical Driver Reliability
Current Season Performance (Points)
Total Team Experience
Total Driver Experience
Relative Qualifying Time Deltas

Raw Features
 Grid Position

Categorical Features
 Track
 Driver Name
 Team Name

Target Engineering

Options:	Driver	Finishing Position	Binary Target: Winner
Categorical Target	Max Verstappen	1	True
✤ Numeric Target	Lewis Hamilton	2	False
Binary Target	Lando Norris	3	False
	Sergio Perez	4	False
Binary Target	Carlos Sainz	5	False
	Valtteri Bottas	6	False
*Winner	Charles Leclerc	7	False
Top Two Finishers	Yuki Tsunoda	8	False
Top Three Finishers (Podium)	Esteban Ocon	9	False
	Daniel Ricciardo	10	False
* Target limbalance	Fernando Alonso	11	False
✤Target Imbalance	Pierre Gasly	12	False
Binary targets will create imbalance	Lance Stroll	13	False
✤ Winner 95% / 5%	Antonio Giovinazzi	14	False
✤ Top Two 90% / 10%	Sebastian Vettel	15	False
	Nicholas Latifi	16	False
✤ Podium: 85% / 15%	George Russell	17	False
	Kimi Räikkönen	18	False

Model Development

- Models Used
 - Logistic Regression
 - ✤ SVM
 - ✤ XGboost
- Cross Validation
 Standard Cross Validation
 Historical Cross Validation
- Data Manipulation
 Oversampling
 Undersampling
 Removal of Crash / Breakdown Data

Scaling

Standard Scaling for Logistic Regression

Further XGBoost Development

Remove Qualifying Data

- Run Model for all three binary targets
- XGBoost Parameters:
 Max Depth: 9
 Estimators 200
 RandomOverSampler Strategy: 1

Measure results for all three target outputs + combined result output:
 Accuracy of 1st place predictions
 Accuracy of predicting a podium finish
 Accuracy of all finishing place predictions

Feature Importance

Model Scoring with Binary Classification

- Create Probabilities of a True Classification
- Shuffle Dataframe and remove index
- Sort results by event date
- Sort results by probability
- Rank drivers from highest probability to lowest
 Highest = first place
 - Lowest = last place
 - If probabilities tie: Order by Grid Position or best performance for that specific track
- Calculate Accuracy
 - First Place
 - Podium Prediction
 - Total Accuracy

				Finishing	
Team	Driver	Prob.	Rank	Position	
Mercedes	Lewis Hamilton	0.870893	1	1	
Red Bull Racing	Max Verstappen	0.843082	2	20	
Mercedes	Valtteri Bottas	0.396337	3	3	
McLaren	Lando Norris	0.394122	4	4	
Ferrari	Charles Leclerc	0.341299	5	2	
Ferrari	Carlos Sainz	0.225045	6	6	
AlphaTauri	Pierre Gasly	0.196246	7	11	
Red Bull Racing	Sergio Perez	0.172109	8	16	
McLaren	Daniel Ricciardo	0.079183	9	5	
Alpine	Fernando Alonso	0.07317	10	7	
Aston Martin	Sebastian Vettel	0.068455	11	19	
AlphaTauri	Yuki Tsunoda	0.068271	12	10	
Williams	Nicholas Latifi	0.067565	13	14	
Aston Martin	Lance Stroll	0.067502	14	8	
Alfa Romeo Racing	Antonio Giovinazzi	0.067484	15	13	
Haas F1 Team	Nikita Mazepin	0.067484	16	17	
Alfa Romeo Racing	Kimi Räikkönen	0.067484	17	15	
Haas F1 Team	Mick Schumacher	0.067484	18	18	
Alpine	Esteban Ocon	0.067073	19	9	
Williams	George Russell	0.066678	20	12	
			*** 2021 British Grand Prix		

Model Results

Year	Target	With Qualifying	Without Qualifying
2019	1 st Place Target	0.761	0.571
2020	1 st Place Target	0.75	0.6875
2021	1 st Place Target	0.818	0.772
Average	1 st Place Target	0.776	0.677

First Place Target is best for predicting across all three tested years

Including qualifying data is better for prediction by about 10% (1-3 races per season)

Betting Results for 2021 Season

Race	Name	Prediction	Result	Odds
Abu Dhabi Grand Prix	Max Verstappen	-	1 1	3
Austrian Grand Prix	Max Verstappen	:	1 1	1.6
Azerbaijan Grand Prix	Max Verstappen	:	L 18	N/A
Bahrain Grand Prix	Lewis Hamilton	-	1 1	2.6
Belgian Grand Prix	Max Verstappen	-	1 1	2.1
British Grand Prix	Max Verstappen	:	L 20	N/A
Dutch Grand Prix	Max Verstappen		1 1	2.1
Emilia Romagna Grand Prix	Lewis Hamilton	-	1 1	2.25
French Grand Prix	Max Verstappen		1 1	2.4
Hungarian Grand Prix	Lewis Hamilton	:	L 2	N/A
Italian Grand Prix	Max Verstappen	:	L 18	N/A
Mexico City Grand Prix	Lewis Hamilton	:	L 2	N/A
Monaco Grand Prix	Max Verstappen		1 1	2.4
Portuguese Grand Prix	Lewis Hamilton	-	1 1	2.25
Qatar Grand Prix	Lewis Hamilton		1 1	1.65
Russian Grand Prix	Lewis Hamilton	-	1 1	1.6
São Paulo Grand Prix	Lewis Hamilton		l 1	3.25
Saudi Arabian Grand Prix	Lewis Hamilton	-	1 1	1.5
Spanish Grand Prix	Lewis Hamilton	-	1 1	2.1
Styrian Grand Prix	Max Verstappen	:	1 1	2.25
Turkish Grand Prix	Max Verstappen	:	L 2	N/A
United States Grand Prix	Max Verstappen	:	1 1	2.4

Qualifying data removed
Red: Incorrect Prediction
Accuracy: 77%

Return on Investment: 25.1%

Continued Development Post Graduation:

Neural Network Classification

Custom Loss/Accuracy Function

Additional target variables? Combinations?

Additional Feature Engineering
 Telemetry Data
 Lap Data
 Practice Data

References

FastF1 Api: <u>https://theoehrly.github.io/Fast-F1/</u>

Github Repo: <u>https://github.com/SpencerStaub/Capstone</u>