Formula One Background

❖ Season Format
❖ 20+ events per season organized into Grand Prix weekends
❖ 20 drivers per year
❖ 10 teams per year with 2 drivers per team

❖ Grand Prix Format
❖ 3 Practice sessions total on Friday and Saturday
❖ 1 Qualifying session
❖ 1 Race

❖ Practice Format
❖ Open track
❖ Drivers record 10-40 laps per session

❖ Qualifying Format
❖ Used to determine the starting order for the race
❖ Quickest driver starts at the front

❖ Race Format
❖ 50-75 laps
❖ 2 hours long
❖ Top 10 finishers score points
Why Formula One?

❖ A unique challenge with nearly unlimited scope

❖ Challenges:
 ❖ Millions of data points
 ❖ Race Data
 ❖ Qualifying Data
 ❖ Practice Data
 ❖ Telemetry Data
 ❖ Weather Data
❖ Target Variable?
 ❖ Categorical?
 ❖ Numerical?
 ❖ Binary?

❖ Unlimited Scope:
 ❖ Feature Engineering Methods
 ❖ Different aggregation methods
 ❖ Varying historical window
 ❖ Relative Performance of Car, Driver, Teammates, etc.
 ❖ Use of Modeling for Feature Engineering
 ❖ Tracks
 ❖ Percentage of tight corners
 ❖ Length of straights
 ❖ Percentage of on-throttle
 ❖ Cars
 ❖ Top Speed
 ❖ Cornering Performance
 ❖ Driver Style

Opportunities to make money through Sports Betting

As a Formula One fan this topic is particularly interesting
Retrieved via the Ergast API through the FastF1 Python package

- Years Available
 - Race results & weather 1951-2022
 - Qualifying results 1994-2022
 - Telemetry 2018-2022

- Available Data includes:
 - Session Results – Qualifying and Race finishing order
 - Lap Results – Lap Time, Sector Time, Tire Compound, Speed Trap
 - Car Telemetry Data – Track Position, Throttle, Brake, Distance of Driver Ahead
 - Weather Data

- 2+ Million observations of telemetry data per Grand Prix Weekend
 - 40+ Million per Season
 - 200+ Million total

- Relatively Clean Data
 - Low NA /Duplicate Rate
Data
❖ Retrieved via the Ergast API through the FastF1 Python package
❖ Full Data Available from 2018-2022
❖ Qualifying and Race Results available 1951-2022
❖ Available Data includes:
 ❖ Session Results – Qualifying and Race finishing order
 ❖ Lap Results – Lap Time, Sector Time, Tire Compound, Speed
 ❖ Car Telemetry Data – Track Position, Throttle, Brake, Distance of Driver Ahead
 ❖ Weather Data
❖ 2 Million observations of telemetry data per Grand Prix Weekend - 40 Million per Season
Track EDA

- 56 Different Tracks Raced (1951-2022)

- Top Tracks:
 - British Grand Prix
 - Italian Grand Prix
 - Monaco Grand Prix

- Most Dangerous Tracks
 - Saudi Arabian Grand Prix
 - Monaco Grand Prix
 - Azerbaijan Grand Prix

- Drivers with Most Track Experience
 - Hamilton (15 brit, 15 Ital, 14 Mon)
 - Verstappen (7 brit, 7 Ital, 6 Mon)
 - Leclerc (4 brit, 4 Ital, 3 Mon)

- Teams with Most Track Experience
 - Ferrari (151 brit, 191 Ital, 145 Mon)
 - Mercedes (30 brit, 31 Ital, 26 Mon)
 - Red Bull (26 brit, 26 Ital, 26 Mon)

Top 10 Tracks by Frequency:
- British Grand Prix
- Italian Grand Prix
- Monaco Grand Prix
- Belgian Grand Prix
- French Grand Prix
- Spanish Grand Prix
- United States Grand Prix
- Hungarian Grand Prix
- Austrian Grand Prix
- Dutch Grand Prix

Most Dangerous Tracks By Average Accident Frequency:
- Saudi Arabian Grand Prix
- Monaco Grand Prix
- Azerbaijan Grand Prix
- Belgian Grand Prix
- Portuguese Grand Prix
- Spanish Grand Prix
- Dutch Grand Prix
- Austrian Grand Prix
- Hungarian Grand Prix
- British Grand Prix
Team and Driver EDA

- 831 Different Drivers (1951-2022)
- 206 Unique Teams (1951-2022)
- Top Current Drivers:
 - Lewis Hamilton
 - Max Verstappen
 - Charles Leclerc
- Top Current Teams:
 - Mercedes
 - Red Bull
 - Ferrari
- Accident Rates
 - Lewis Hamilton: 0.044983
 - Max Verstappen: 0.091549
 - Charles Leclerc: 0.109756
- Car Reliability
 - Mercedes: 0.075728
 - Red Bull: 0.103659
 - Ferrari: 0.207965
Qualifying Correlation

- Qualifying Results (where a driver starts) is highly correlated with finishing position
 - Starts in 1st: 42% Win Rate
 - Starts in 2nd: 23% Win Rate
 - Qualifying Feature Importance: 0.375
 - All other features are less than 0.02

- This CAN be a problem:

- When Qualifying is removed:
 - Max Feature Importance Value Decreases
 - Other Features Importance Values Increase
 - Model accuracy decreases, however, betting odds increase
 - The less data before a bet is made = higher betting odds + more opportunities to make money
 - Is it worth removing qualifying?

*** Monaco has a 51% First place win rate***
Feature Engineering

❖ Aggregation Features (Grouped by Driver, Team and/or Race)
 ❖ Historical Finishing Positions (Last, Past 10, Total History)
 ❖ Historical Qualifying Positions (Last, Past 10, Total History)
 ❖ Previous Years Performance (Points, Driver/Team Champion)
 ❖ Historical Car Reliability
 ❖ Historical Driver Reliability
 ❖ Current Season Performance (Points)
 ❖ Total Team Experience
 ❖ Total Driver Experience
 ❖ Relative Qualifying Time Deltas

❖ Raw Features
 ❖ Grid Position

❖ Categorical Features
 ❖ Track
 ❖ Driver Name
 ❖ Team Name
Target Engineering

❖ Options:
 ❖ Categorical Target
 ❖ Numeric Target
 ❖ Binary Target

❖ Binary Target
 ❖ Winner
 ❖ Top Two Finishers
 ❖ Top Three Finishers (Podium)

❖ Target Imbalance
 ❖ Binary targets will create imbalance
 ❖ Winner 95% / 5%
 ❖ Top Two 90% / 10%
 ❖ Podium: 85% / 15%

<table>
<thead>
<tr>
<th>Driver</th>
<th>Finishing Position</th>
<th>Binary Target: Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Verstappen</td>
<td>1</td>
<td>True</td>
</tr>
<tr>
<td>Lewis Hamilton</td>
<td>2</td>
<td>False</td>
</tr>
<tr>
<td>Lando Norris</td>
<td>3</td>
<td>False</td>
</tr>
<tr>
<td>Sergio Perez</td>
<td>4</td>
<td>False</td>
</tr>
<tr>
<td>Carlos Sainz</td>
<td>5</td>
<td>False</td>
</tr>
<tr>
<td>Valtteri Bottas</td>
<td>6</td>
<td>False</td>
</tr>
<tr>
<td>Charles Leclerc</td>
<td>7</td>
<td>False</td>
</tr>
<tr>
<td>Yuki Tsunoda</td>
<td>8</td>
<td>False</td>
</tr>
<tr>
<td>Esteban Ocon</td>
<td>9</td>
<td>False</td>
</tr>
<tr>
<td>Daniel Ricciardo</td>
<td>10</td>
<td>False</td>
</tr>
<tr>
<td>Fernando Alonso</td>
<td>11</td>
<td>False</td>
</tr>
<tr>
<td>Pierre Gasly</td>
<td>12</td>
<td>False</td>
</tr>
<tr>
<td>Lance Stroll</td>
<td>13</td>
<td>False</td>
</tr>
<tr>
<td>Antonio Giovinazzi</td>
<td>14</td>
<td>False</td>
</tr>
<tr>
<td>Sebastian Vettel</td>
<td>15</td>
<td>False</td>
</tr>
<tr>
<td>Nicholas Latifi</td>
<td>16</td>
<td>False</td>
</tr>
<tr>
<td>George Russell</td>
<td>17</td>
<td>False</td>
</tr>
<tr>
<td>Kimi Räikkönen</td>
<td>18</td>
<td>False</td>
</tr>
</tbody>
</table>
Model Development

- Models Used
 - Logistic Regression
 - SVM
 - XGboost

- Cross Validation
 - Standard Cross Validation
 - Historical Cross Validation

- Data Manipulation
 - Oversampling
 - Undersampling
 - Removal of Crash / Breakdown Data

- Scaling
 - Standard Scaling for Logistic Regression
Further XGBoost Development

❖ **Remove Qualifying Data**

❖ Run Model for all three binary targets

❖ XGBoost Parameters:
 ❖ Max Depth: 9
 ❖ Estimators 200
 ❖ RandomOverSampler Strategy: 1

❖ Measure results for all three target outputs + combined result output:
 ❖ Accuracy of 1st place predictions
 ❖ Accuracy of predicting a podium finish
 ❖ Accuracy of all finishing place predictions
Model Scoring with Binary Classification

- Create Probabilities of a True Classification
- Shuffle DataFrame and remove index
- Sort results by event date
- Sort results by probability
- Rank drivers from highest probability to lowest
 - Highest = first place
 - Lowest = last place
 - If probabilities tie: Order by Grid Position or best performance for that specific track
- Calculate Accuracy
 - First Place
 - Podium Prediction
 - Total Accuracy

<table>
<thead>
<tr>
<th>Team</th>
<th>Driver</th>
<th>Prob.</th>
<th>Rank</th>
<th>Finishing Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercedes</td>
<td>Lewis Hamilton</td>
<td>0.870893</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Red Bull Racing</td>
<td>Max Verstappen</td>
<td>0.843082</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Mercedes</td>
<td>Valtteri Bottas</td>
<td>0.396337</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>McLaren</td>
<td>Lando Norris</td>
<td>0.394122</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ferrari</td>
<td>Charles Leclerc</td>
<td>0.341299</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Ferrari</td>
<td>Carlos Sainz</td>
<td>0.225045</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>AlphaTauri</td>
<td>Pierre Gasly</td>
<td>0.196246</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Red Bull Racing</td>
<td>Sergio Perez</td>
<td>0.172109</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>McLaren</td>
<td>Daniel Ricciardo</td>
<td>0.079183</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Alpine</td>
<td>Fernando Alonso</td>
<td>0.07317</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Aston Martin</td>
<td>Sebastian Vettel</td>
<td>0.068455</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>AlphaTauri</td>
<td>Yuki Tsunoda</td>
<td>0.068271</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Williams</td>
<td>Nicholas Latifi</td>
<td>0.067565</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Aston Martin</td>
<td>Lance Stroll</td>
<td>0.067502</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Alfa Romeo Racing</td>
<td>Antonio Giovinazzi</td>
<td>0.067844</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Haas F1 Team</td>
<td>Nikita Mazepin</td>
<td>0.067484</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Alfa Romeo Racing</td>
<td>Kimi Räikkönen</td>
<td>0.067484</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Haas F1 Team</td>
<td>Mick Schumacher</td>
<td>0.067484</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Alpine</td>
<td>Esteban Ocon</td>
<td>0.067073</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>Williams</td>
<td>George Russell</td>
<td>0.066678</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

*** 2021 British Grand Prix
Model Results

<table>
<thead>
<tr>
<th>Year</th>
<th>Target</th>
<th>With Qualifying</th>
<th>Without Qualifying</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>1<sup>st</sup> Place Target</td>
<td>0.761</td>
<td>0.571</td>
</tr>
<tr>
<td>2020</td>
<td>1<sup>st</sup> Place Target</td>
<td>0.75</td>
<td>0.6875</td>
</tr>
<tr>
<td>2021</td>
<td>1<sup>st</sup> Place Target</td>
<td>0.818</td>
<td>0.772</td>
</tr>
<tr>
<td>Average</td>
<td>1<sup>st</sup> Place Target</td>
<td>0.776</td>
<td>0.677</td>
</tr>
</tbody>
</table>

❖ First Place Target is best for predicting across all three tested years.
❖ Including qualifying data is better for prediction by about 10% (1-3 races per season).
Betting Results for 2021 Season

<table>
<thead>
<tr>
<th>Race</th>
<th>Name</th>
<th>Prediction</th>
<th>Result</th>
<th>Odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu Dhabi Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Austrian Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>Azerbaijan Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>18</td>
<td>N/A</td>
</tr>
<tr>
<td>Bahrain Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>2.6</td>
</tr>
<tr>
<td>Belgian Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>British Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td>Dutch Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Emilia Romagna Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>2.25</td>
</tr>
<tr>
<td>French Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>1</td>
<td>2.4</td>
</tr>
<tr>
<td>Hungarian Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>Italian Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>18</td>
<td>N/A</td>
</tr>
<tr>
<td>Mexico City Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Monaco Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>1</td>
<td>2.4</td>
</tr>
<tr>
<td>Portuguese Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>2.25</td>
</tr>
<tr>
<td>Qatar Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>1.65</td>
</tr>
<tr>
<td>Russian Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>São Paulo Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>3.25</td>
</tr>
<tr>
<td>Saudi Arabian Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Spanish Grand Prix</td>
<td>Lewis Hamilton</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>Styrian Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>1</td>
<td>2.25</td>
</tr>
<tr>
<td>Turkish Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>United States Grand Prix</td>
<td>Max Verstappen</td>
<td>1</td>
<td>1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

- Qualifying data removed
- **Red**: Incorrect Prediction
- Accuracy: 77%
- Return on Investment: 25.1%
Continued Development Post Graduation:

- Neural Network Classification
- Custom Loss/Accuracy Function
- Additional target variables? Combinations?
- Additional Feature Engineering
 - Telemetry Data
 - Lap Data
 - Practice Data
Thank You
Questions?
References

❖ FastF1 Api: https://theoehrly.github.io/Fast-F1/
❖ Github Repo: https://github.com/SpencerStaub/Capstone